BANKURA SAMMILANI COLLEGE Department of Chemistry Teaching Module Subject: Chemistry (Core) UG, SEM I-VI Semester Faculty: Dr. Sabir Ahammed

Core T1 - Organic Chemistry I

Core Topic	Core Topic Modules	
Mechanistic classification: ionic, radical and pericyclic (defin and example)		1
	Reaction type: addition, elimination and substitution reactions (definition and example)	1
	Stereochemical representation of Newman and interconversions.	1
	Nature of bond cleavage and bond formation: homolytic and heterolytic bond fission, homogenic and heterogenic bond formation Curly arrow rules in representation of mechanistic steps	
General	Reagent type: electrophiles and nucleophiles (elementary idea)	1
Treatment of	Electrophilicity and nucleophilicity in terms of FMO approach	1
Reaction	Reactive intermediates: carbocations (carbenium and carbonium	1
Mechanism I	ions)	1
	Reactive intermediates: carbanions: generation and stability, structure using orbital picture	1
	Reactive intermediates: carbon radicals: generation and stability, structure using orbital picture	1
	Reactive intermediates: carbenes: generation and stability, structure using orbital picture	1
	Electrophilic/nucleophilic behavior of reactive intermediates (elementary idea)	1

Core T4 - Organic Chemistry II

Core Topic	Modules	No. of Lecture
		S
	Free-radical substitution reaction: halogentaion of alkanes, mechanism (with evidence) and stereochemical features; reactivity- selectivity principle in the light of Hammond's postulate	1
	Nucleophilic substitution reactions: substitution at sp3 centre: mechanisms (with evidence), relative rates & stereochemical features	1
	SN1, SN2, SN2', SN1' (allylic rearrangement) and SNi	1
Substitution and	Substitution and Eliminationeffects of solvent, substrate structure, leaving group and nucleophiles (including ambident nucleophiles, cyanide & nitrite)Substitutions involving NGP	
Reactions	Role of crown ethers and phase transfer catalysts; [systems: alkyl halides, allyl halides, benzyl halides, alcohols, ethers, epoxides]	1 1
	Elimination reactions: E1, E2, E1CB and Ei (pyrolytic syn eliminations)	1
	Formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity	1
	Comparison between substitution and elimination	
	Importance of Bredt's rule relating to the formation of C=C	1

Core T7 - Organic Chemistry III

Core Topic	Modules	No. of Lectur es
	Grignard reagent: preparation and reactions (mechanism with evidence)	1
	Organolithiums: preparation and reactions (mechanism with evidence)	1
	Gilman cuprates: preparation and reactions (mechanism with evidence)	1
	Addition of Grignard and organolithium to carbonyl compounds	1
Organometallics	Substitution on -COX; directed ortho metalation of arenes using organolithiums, conjugate addition by Gilman cuprates	1
	Corey-House synthesis, abnormal behavior of Grignard reagents	1
	Comparison of reactivity among Grignard, organolithiums and	1
	organocopper reagents	
	Reformatsky reaction; Blaise reaction	1
	Concept of umpolung and base-nucleophile dichotomy in case of organometallic reagents	1
	Nucleophilic addition to α , β -unsaturated carbonyl system: general principle and mechanism (with evidence)	1
Carbonyl and	Direct and conjugate addition, addition of enolates (Michael reaction), Stetter reaction, Robinson annulation	1
Related	Substitution at sp2 carbon (C=O system): mechanism (with	1
Compounds	evidence): BAC2, AAC2, AAC1, AAL1 (in connection to acid and ester)	
	Acid derivatives: amides, anhydrides & acyl halides (formation and	1
	hydrolysis including comparison)	
	Elementary ideas of Green Chemistry: Twelve (12) principles of	1
	green chemistry	
Green	Planning of green synthesis	1
Chemistry	common organic reactions and their counterparts: reactions: Aldol,Friedel-Crafts, Michael, Knoevenagel, Cannizzaro, benzoin condensation and Dieckmann condensation	1

Core T10 - Organic Chemistry IV

Core Topic	Modules	No. of Lectur es
	Amines: Aliphatic & Aromatic: preparation, separation (Hinsberg's method) and identification of primary, secondary and tertiary amines; reaction (with mechanism)	
	Eschweiler–Clarke methylation, diazo coupling reaction, Mannich reaction	1
	Formation and reactions of phenylenediamines, diazomethane and diazoacetic ester	1
Nitrogen compounds	Nitro compounds (aliphatic and aromatic): preparation and reaction (with mechanism): reduction under different conditions	1
•••••••••••••	Nef carbonyl synthesis, Henry reaction and conjugate addition of nitroalkane anion	1
	Alkylnitrile and isonitrile: preparation and reaction (with mechanism): Thorpe nitrile condensation, von Richter reaction.	1
	Diazonium salts and their related compounds: reactions (with mechanism) involving replacement of diazo group; reactions: Gomberg, Meerwein, Japp-Klingermann.	1
	Rearrangement to electron-deficient carbon: Wagner-Meerwein rearrangement, pinacol rearrangement, dienone-phenol; Wolff rearrangement in Arndt-Eistert synthesis, benzilbenzilic acid rearrangement, Demjanov rearrangement, Tiffeneau–Demjanov rearrangement	1
	Rearrangement to electron-deficient nitrogen: rearrangements: Hofmann, Curtius, Lossen, Schmidt and Beckmann.	1
Rearrangements	Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, cumene hydroperoxide-phenol rearrangement and Dakin reaction.	1
Kearrangements	Aromatic rearrangements: Migration from oxygen to ring carbon: Fries rearrangement and Claisen rearrangement.	1
	Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, Fischer-Hepp rearrangement, N-azo to C-azo rearrangement, Bamberger rearrangement, Orton rearrangement and benzidine rearrangement	1
	Rearrangement reactions by green approach: Fries rearrangement, Claisen rearrangement, Beckmann rearrangement, Baeyer-Villiger oxidation.	1

Core T12 - Organic Chemistry V	V
--------------------------------	---

Core Topic	Modules	No. of Lectur es
	Amino acids: synthesis with mechanistic details: Strecker, Gabriel, acetamido malonic ester, azlactone	1
	Amino acids: synthesis with mechanistic details: Bücherer hydantoin synthesis, synthesis involving diketopiperazine	1
	Isoelectric point, zwitterions; electrophoresis, reaction (with mechanism): ninhydrin reaction, Dakin-West reaction; resolution of racemic amino acids	1
	Peptides: peptide linkage and its geometry	1
	Syntheses (with mechanistic details) of peptides using N-protection & C-protection, solid-phase (Merrifield) synthesis	1
Biomolecules	peptide sequence: Cterminal and N-terminal unit determination (Edman, Sanger & 'dansyl' methods)	1
	Partial hydrolysis; specific cleavage of peptides: use of CNBr.	1
	Nucleic acids: pyrimidine and purine bases (only structure & nomenclature)	1
	Nucleosides and nucleotides corresponding to DNA and RNA	1
	Mechanism for acid catalysed hydrolysis of nucleosides (both pyrimidine and purine types)	1
	Comparison of alkaline hydrolysis of DNA and RNA	1
	Elementary idea of double helical structure of DNA (Watson-Crick model)	1
	Complimentary base-pairing in DNA	1

MODULE of the UG Syllabus Under CBCS and Semester System by DR. SAMARESH GHOSH

Subject: UG Chemistry (Core)

Course	Course Title/ID	Course Type	Semester
SHCHE/101/C-1	Organic Chemistry I/11411	C-1	Ι

Module	Course Description	Lectures
1	Bonding and Physical Properties	
1.1	Valence Bond Theory: Concept of hybridization, shapes of molecules, calculation of formal charges and double bond equivalent (DBE); orbital pictures of bonding (sp3, sp2, sp: C-C, C-N & C-O systems and s-cis and s-trans geometry for suitable cases)	3
1.2	Electronic displacements: inductive effect, field effect, mesomeric effect, resonance (including hyperconjugation); resonance energy; bond polarization and bond polarizability; electromeric effect; steric effect, steric inhibition of resonance.	4
1.3	Physical properties: Influence of hybridization on bond properties: bond dissociation energy (BDE) and bond energy; bond distances, bond angles; concept of bond angle strain (Baeyer's strain theory); melting point/boiling point and solubility of common organic compounds in terms of covalent & non-covalent intermolecular forces; polarity of molecules and dipole moments; relative stabilities of isomeric hydrocarbons in terms of heat of hydrogenation, heat of combustion and heat of formation.	4
1.4	MO theory: Qualitative idea about molecular orbitals, bonding and antibonding	5
	interactions, idea about σ , σ^* , π , π^* , $n - MOs$; basic idea about Frontier MOs	
	(FMO); concept of HOMO, LUMO and SOMO; interpretation of chemical	
	reactivity in terms of FMO interactions; sketch and energy levels of π MOs of i)	
	acyclic p orbital system (C=C, conjugated diene, triene, allyl and pentadienyl systems) ii) cyclic p orbital system (neutral systems: [4], [6]-annulenes; charged	
	systems: 3-,4-,5-membered ring systems); Hückel's rules for aromaticity up to	
	[10]-annulene (including mononuclear heterocyclic compounds up to 6- membered ring); concept of antiaromaticity and homoaromaticity; non-aromatic	
	molecules; Frost diagram; elementary idea about α and β ; measurement of	
	delocalization energies in terms of β for buta-1,3-diene,	
	cyclobutadiene, hexa-1,3,5-triene and benzene.	
1.5	Assignment and discussion	1
2	General Treatment of Reaction Mechanism I	XXX
3	Stereochemistry-I	XXX

- 1. I. L. Finar, Organic Chemistry (Volume 1), Pearson Education.
- 2. T.W. Graham Solomons, C. B. Fryhle, Organic Chemistry, John Wiley & Sons, Inc.
- 3. N. Tewari, Organic Chemistry-A Modern Approach (Volume 1), McGraw Hill Education.

For Further Reading

Contd-----

- 1. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Second edition, Oxford University Press.
- 2. I. Fleming, Molecular Orbitals and Organic Chemical Reactions, Reference/Student Edition, Wiley.

MODULE of the PG Syllabus under Semester System by DR. SAMARESH GHOSH

Core Subject	Paper Code	Semester
Organic Chemistry	CHEM102C	1

Module	Course Description	Locturos
	Course Description	Lectures
1	Bonding in Organic Molecules	XXX
2	Stereochemistry and Conformational Analysis-I	XXX
3	NMR Spectroscopy	
3.1	Principles, instrumentation and different techniques (CW and FT) of NMR spectroscopy.	1
3.2	Factors influencing chemical shift, spin-spin interactions, coupling constant (J); Jablonski diagram, spin-decoupling. First order and second order spectra, spin system notations.	3
3.3	Introduction to 13C: proton decoupled 13C spectra, NOE, cross polarization, peak integration, off resonance 13C.	3
4	Mass Spectroscopy	
4.1	Mass Spectroscopy Principles, instrumentation and applications of mass spectrometry-methods of generation of ions in EI, CI, FD and FAB, MALDI-TOF.	2
4.2	Detection of ions, ion analysis, ion abundance, molecular ion peak, metastable peak, isotope, ion-molecule interaction and analysis of fragmentation patterns. Calculation of MF from mass.	3
4.3	Applications of Mass, UV-VIS, IR and NMR spectroscopy to structural and mechanistic problems.	2

Reference Books

- 1. P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International Publishers
- 2. W. Kemp, Organic Spectroscopy, Palgrave.
- 3. D. L. Pavia et al. Introduction to Spectroscopy, Cengage Learning India Ed.
- 4. J. Dyer, Application of Absorption Spectroscopy of Organic Compounds, PHI Private Ltd.
- 5. R. M. Silverstein, G. C. Bassler and T. C. Morrill, *Spectroscopic Identification of Organic Compounds*, John Wiley & Sons, Inc.

MODULE of the PG Syllabus under Semester System by DR. SAMARESH GHOSH

Core Subject	Paper Code	Semester
Organic Chemistry	CHEM202C	II

Module	Course Description	Lectures
1	Heterocyclic Chemistry-I	
1.1	Systematic nomenclature (Hantzch-Widman system) for monocycle and fused heterocycles.	2
1.2	General approach to heterocyclic synthesis-cyclisation and cycloaddition routes. Heterocycles in organic synthesis-masked functionalities, umpolung, Stork annulations reaction. Rearrangement and ring transformation involving 5- and 6-membered heterocycles with one heteroatom.	4
1.3	Assignment and Discussion	1
2	Organic Name Reaction and Reagents	XXX
3	Pericyclic Reactions-I	XXX
4	Asymmetric Synthesis	XXX

Reference Books

- 1. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Oxford University Press .
- 2. J.A. Joule, K. Mills, *Heterocyclic Chemistry*, Blackwell Science.
- 3. T. L. Gilchrist, *Heterocyclic Chemistry*, Pearson Education.

MODULE of the UG Syllabus Under CBCS and Semester System by DR. SAMARESH GHOSH

Subject: UG Chemistry (Core)

Course	Course Title/ID	Course Type	Semester
SHCHE/202/C-4	Organic Chemistry II/21412	C-4	II

Module	Course Description	Lectures
1	Stereochemistry II	XXX
2	General Treatment of Reaction Mechanism II	
2.1	Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE, intermolecular & intramolecular reactions.	3
2.2	Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity; proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle; application of thermodynamic principles in acid base equilibria.	4
2.3	Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo- amino and enamine-imine systems); valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems), factors affecting keto-enol tautomerism; application of thermodynamic principles in tautomeric equilibria.	3
2.4	Reaction kinetics: rate constant and free energy of activation; concept of order and molecularity; free energy profiles for one-step, two-step and three-step reactions; catalyzed reactions: electrophilic and nucleophilic catalysis; kinetic control and thermodynamic control of reactions; isotope effect: primary and secondary kinetic isotopiceffect (k_H / k_D); principle of microscopic reversibility; Hammond's postulate.	5
2.5	Assignment and discussion	1
3	Substitution and Elimination Reactions	XXX

Text Books

- 1. T.W. Graham Solomons, C. B. Fryhle, Organic Chemistry, John Wiley & Sons, Inc.
- 2. N. Tewari, Advanced Organic Reaction Mechanism, Books & Allied (P) Ltd.
- 3. M.S. Singh, Advanced Organic Chemistry-Reactions and Mechanisms, Pearson Education.

For Further Reading

- 1. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Second edition, Oxford University Press.
- 2. G.M. Loudon, Organic Chemistry, Fourth edition, Oxford University Press.

MODULE of the UG Syllabus Under CBCS and Semester System by DR. SAMARESH GHOSH

Subject: UG Chemistry (Core)

Course	Course Title/ID	Course Type	Semester
SHCHE/303/C-7	Organic Chemistry III/31413	C-7	111

Module	Course Description	No. of Lectures
1	Chemistry of alkenes and alkynes	XXX
2	Aromatic Substitution	XXX
3	Carbonyl and Related Compounds	
3.1	Addition to C=O: structure, reactivity and preparation of carbonyl compounds; mechanism (with evidence), reactivity, equilibrium and kinetic control; Burgi- Dunitz trajectory in nucleophilic additions; formation of hydrates, cyano hydrins and bisulphite adduct; nucleophilic addition-elimination reactions with alcohols, thiols and nitrogen- based nucleophiles; reactions: benzoin condensation, Cannizzaro and Tischenko reactions, reactions with ylides: Wittig and Corey-Chaykovsky reaction; Rupe rearrangement, oxidations and reductions: Clemmensen, Wolff-Kishner, LiAlH4, NaBH4, MPV, Oppenauer, Bouveault-Blanc, acyloin condensation; oxidation of alcohols with PDC and PCC; periodic acid and leadtetraacetate oxidation of 1,2-diols.	5
3.2	Exploitation of acidity of α-H of C=O: formation of enols and enolates; kinetic and thermodynamic enolates; reactions (mechanism with evidence): halogenation of carbonyl compounds under acidic and basic conditions, Hell- Volhard-Zelinsky (H. V. Z.) reaction, nitrosation, SeO2 (Riley) oxidation; condensations (mechanism with evidence): Aldol, Tollens', Knoevenagel, Claisen- Schmidt, Claisen ester including Dieckmann, Stobbe; Mannich reaction, Perkin reaction, Favorskii rearrangement; alkylation of active methylene compounds; preparation and synthetic applications of diethyl malonate and ethyl acetoacetate; specific enol equivalents (lithium enolates, enamines, aza-enolates and silyl enol ethers) in connection with alkylation, acylation and aldol type reaction.	4
3.3	Elementary ideas of Green Chemistry: Twelve (12) principles of green chemistry; planning of green synthesis; common organic reactions and their counterparts: reactions: Aldol,Friedel- Crafts, Michael, Knoevenagel, Cannizzaro, benzoin condensation and Dieckmann condensation.	3
3.4	Nucleophilic addition to α , β -unsaturated carbonyl system: general principle and mechanism (with evidence); direct and conjugate addition, addition of enolates (Michael reaction), Stetter reaction, Robinson annulations.	2
3.5	Substitution at sp2 carbon (C=O system): mechanism (with evidence): BAC2, AAC2, AAC1, AAL1 (in connection to acid and ester); acid derivatives: amides, anhydrides & acyl halides (formation and hydrolysis including comparison).	3
3.6	Assignment and discussion	1

4	Organometallics	XXX

Contd-----

Text Books

- 1. Finar, I. L. Organic Chemistry (Volume 1), Pearson Education.
- 2. T.W. Graham Solomons, C. B. Fryhle, Organic Chemistry, John Wiley & Sons, Inc.
- 3. N. Tewari, Advanced Organic Reaction Mechanism, Books & Allied (P) Ltd.
- 4. M.S. Singh, Advanced Organic Chemistry-Reactions & Mechanisms, Pearson Education.
- 5. S.K. Ghosh, Advanced General Organic Chemistry- A Modern Approach, New Central Book Agency (P) Ltd.

For Further Reading

- 1. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Second edition, Oxford University Press.
- 2. G. M. Loudon, Organic Chemistry, Fourth edition, Oxford University Press.
- 3. T.M. Sorrell, Organic Chemistry, Viva Books (P) Ltd

BANKURA SAMMILANI COLLEGE Department of Chemistry Teaching Module Subject: Chemistry (Corc) Semester-III

Course code: Core T5 - Physical Chemistry II Unit: Transport Processes & Chemical Equilibrium Faculty: Dr. Swapnadip Roy

No. of	Торіс
Lectures	
Lecture 1	Introductory class
Lecture 2	Fick's law
Lecture 3	Idea of Flux and force,
Lecture 4	phenomenological coefficients & their inter-relationship (general form), different examples of transport properties
Lecture 5	Basic idea of Viscosity
Lecture 6	General features of fluid flow (streamline flow and turbulent flow)
Lecture 7	Newton's equation, viscosity coefficient
Lecture 8	Poiseuille's equation
Lecture 9	Principle of determination of viscosity coefficient of liquids by falling
	sphere method
Lecture 10	Temperature variation of viscosity of liquids and comparison with
	that of gases
Lecture 11	Transport number
Lecture 12	Principles of Hittorf's and Moving-boundary method
Lecture 13	Wien effect, Debye-Falkenhagen effect
Lecture 14	Walden's rule
Lecture 15	Thermodynamic conditions for equilibrium
Lecture 16	Degree of Advancement
Lecture 17	Degree of Advancement
Lecture 18	van't Hoff's reaction isotherm (deduction from chemical potential)
Lecture 19	Variation of free energy with degree of advancement
Lecture 20	Equilibrium constant and standard Gibbs free energy change
Lecture 21, 22	Definitions of KP, Kc and Kx; van't Hoff's reaction isobar and
	isochore from different standard states
Lecture 23	Shifting of equilibrium due to change in external parameters e.g.
T	temperature and pressure
Lecture 24	Variation of equilibrium constant with addition to inert gas
Lecture 25	Le Chatelier's principle and its derivation

BANKURA SAMMILANI COLLEGE Department of Chemistry Teaching Module Subject: PG Chemistry

Semester-I

Course code: CHEM 103C - Physical Chemistry

Unit: Chemical Kinetics

Faculty: Dr. Swapnadip Roy

No. of	Торіс
Lectures	
Lecture 1	Basic aspects of Chemical kinetics
Lecture 2	Theories of reaction rates
Lecture 3	Applications to uni-molecular reactions
Lecture 4	Applications to bi-molecular reactions
Lecture 5	Applications to termolecular reactions
Lecture 6	Thermodynamic formulation of reaction rate
Lecture 7	Reactions in solution phase
Lecture 8	Cage Effect
Lecture 9	Dielectric effect on ion-ion reaction
Lecture 10	Electrostriction
Lecture 11	Volume of activation
Lecture 12	Effect of pressure on reaction rate
Lecture 13	Classification of reactions on the basis of volume of activation
Lecture 14	Curtin-Hammett principle
Lecture 15	Linear free energy relationship
Lecture 16	Hammett and Taft equation
Lecture 17	Flow process and relaxation techniques

BANKURA SAMMILANI COLLEGE Department of Chemistry Teaching Module Subject: PG Chemistry Semester-III

Course code: CHEM 303C - Physical Chemistry

Unit: Surface Chemistry & Bio-physical Chemistry Faculty: Dr. Swapnadip Roy

No. of	Торіс
Lectures	
Lecture 1	General aspects of Surfacetension
Lecture 2	Idea of curved surfaces
Lecture 3	Young-Laplace and Kelvin equations
Lecture 4	Adsorption on solids
Lecture 5	Micelles reverse micelles
Lecture 6	Microemulsion and its application
Lecture 7	Thermodynamics of micellization
Lecture 8	Application of micelles and microemulsion
Lecture 9	Hydrophobic hydration
Lecture 10	micelle formation
Lecture 11	hydrophobic interaction
Lecture 12	stabilization and denaturation of protein
Lecture 13	Water structure alternation theory of denaturation of protein
Lecture 14	protein-lipid interaction
Lecture 15	Transport of ions and small molecules through membranes
Lecture 16	Ion channels

Core T1 - Organic Chemistry I

Core Topic	Modules	No. of Lectures
	Introduction; Concept of constitution, chirality, chiral centre,; stereochemical representation of Flying-wedge.	1
	Stereochemical representation of Fischer, Sawhorse, concept of configuration, conformation	1
	Stereochemical representation of Newman and interconversions.	1
	Molecular symmetry, symmetry operations plane, simple axes of symmetry.	1
	Symmetry operations: centre of symmetry and alternating axes; point groups (Cv, Cnh, Cnv, Cn, Dh, Dnh, Dnd, Dn, Sn, Cs, Ci); assymatric and dissymmetric molecules; enantiomers and diastereomers; concept of epimers	1
Stereochemistry	Erythro/Threo, D/L, syn/anti nomenclatures for aldols.	1
stereochennistry	configurational nomenclature: R/S	1
	E/Z descriptors for C=C, conjugated diene, triene, C=N and N=N systems; combination of R/S- and 4. E/ Z- isomerisms:	1
	concept of stereogenicity, chirotopicity and pseudoasymmetry; chiralcentres and number of stereoisomerism: systems involving 1/2/3-chiral centre(s) (AA, AB, ABA and ABC types)	1
	Optical activity and optical isomerism, optical rotation: specific and molecular; optical purity, enantiomeric excess.	1
	racemisation (through cationic, anionic, radical intermediates and through reversible formation of stable achiral intermediates);	1
	Resolution of acids, bases and alcohols via diastereomeric salt formation; invertomerism of chiral trialkylamines	1

Core T4 - Organic Chemistry II

Core Topic	Modules	No. of Lectures
	Conformational Analysis of Acyclic Molecules: energy barrier of rotation, concept of torsional and steric strains; conformational analysis of ethane, propane, n-butane, butane gauche interaction	1
	dipole interaction and H-bonding;	1
	2-methylbutane and 2,3-dimethylbutane; haloalkane, 1,2- dihaloalkanes and 1,2-diols (up to four carbons); 1,2-halohydrin; conformation of conjugated systems (s-cis and s-trans)	1
Stereochemistry	Concept of prostereoisomerism: prostereogeniccentre; concept of (pro)n-chirality: topicity of ligands and faces (elementary idea); pro- R/pro-S, pro-E/pro-Z and Re/Si descriptors; pro-r and pro-s descriptors of ligands on propseudoasymmetriccentre.	1
	Chirality arising out of stereoaxis: stereoisomerism of substituted cumulenes with even and odd number of double bonds; chiral axis in allenes, spiro compounds,	1
	Alkylidenecycloalkanes and biphenyls; related configurational descriptors (Ra/Sa and P/M); atropisomerism; racemisation of chiral biphenyls; buttressing effect.	1

Core T7 - Organic Chemistry III

Core Topic	Modules	No. of
	Addition to C=C: mechanism, reactivity, regioselectivity (Markownikoff and anti-Markownikoff additions) and stereoselectivity of reactions, Halogenation, hydrohalogenation,	Lectures
	routation, hydrogenation, oxymercuration-demercuration	1
	internal alkenes., epoxidation, syn and anti-hydroxylation	1
	addition to diene (conjugated dienes and allene);	1
Electrophilic and radical	Mechanism of allylic and benzylic bromination in competition with brominations across C=C; use of NBS	1
addition to C-C multiple bonds	Birch reduction of benzenoid aromatics; interconversion of E - and Z - alkenes; iodolactonisation	1
	Addition to C=C (in comparison to C=C): mechanism, reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations	1
	Addition to C≡C, hydrohalogenation, hydration, oxymercuration- demercuration	1
	Addition to C≡C hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity	1
	Mechanism; halogenation, sulfonation	1
A	Nitration, nitrosation Friedel-Crafts reactions	1
Aromatic	Orientation and reactivity of Aromatic electrophilic substitution	1
electrophilic substitution	Haworth synthesis, Gatterman-Koch, Gatterman, Hoesch,	1
substitution	Vilsmeier-Haack, Reimer-Tiemann, Kolbe-Schmidt, chloromethylation, Manasse	1
	ArSN1 mechanism	1
Aromatic	Addition-elimination mechanism,	1
nucleophilic	Elimination-addition (benzyne) mechanism;	1
substitution	orientation and reactivity of aromatic nucleophilic substitution	1

_{core} T12 - Organic Chemistry V

Core Topic	Modules	
	Chemistry of man	No. of
	Chemistry of monosaccharides and disaccharides including	Lectures
	Conformation	1
	Conformations of monosaccharides and disaccharides	
	Configurations: D-glucose, fructose, galactose, arabinose and sucrose	1
	sucrose and	1
Carbohydrate	Reactions of monosaccharides	-
chemistry	stepping-up reactions of monosaccharidag	1
J	stepping-down reactions of monosaccharides	1
	conversion of aldose to ketose and vice versa	1
	mutarotation	1
	epimerization	1
	anomeric effect,	1
	elementary idea about starch and cellulose	1
	Pericyclic reactions EMO annual 1 5 it 1 is	1
	Pericyclic reactions FMO approach, definition, classification	1
	Construction of molecular orbitals of different <i>pi</i> -electrons system Electrocyclic reactions	1
	[2+2] Cycloaddition reactions	1
Pericyclic	[4+2] Cycloaddition reactions	1
reactions	Alder ene reaction	1
reactions	Sigmatropic reactions: [1,j] and [i,j] shifts	1
	Sigmatropic reactions: [1,3] and [1,5] shifts	1
	[3 3] signatronia shifts with reference to O	1
	[3,3] sigmatropic shifts with reference to Cope rearrangements	1
	[3,3] signatropic shifts with reference to Claisen rearrangements	1
	Alicyclic compounds: concept of I-strain; conformational analysis:	1
	cyclohexane, mono and disubstituted cyclohexane; symmetry properties and optical activity; topomerisation	
	Conformation & reactivity in cyclohexane system: consideration	
	ofsteric and stereoelectronic requirements	1
Cyclic Stereochemistry	Synthesis and reactions in cyclohexane systems: elimination (E2,	
	(EI)	1
	Synthesis and reactions in cyclohexane systems: nucleophilic	1
집작용의 관계 문제 말했다.	substitution (SN1, SN2, SNi, NGP), merged substitution-elimination	
	Rearrangements; oxidation of cyclohexanol esterification	1
	saponification, lactonisation, epoxidation, pyrolytic syn elimination	

BANKURA SAMMILANI COLLEGE

Teaching Module Subject: Chemistry (Core)

Semester-I

Course code: Core T2 - Physical Chemistry I

Unit : Kinetic Theory and Gaseous state Teacher: Dr. Mrinmoy Shannigrahi

No.of	Торіс
Lectures	
Lecture 1	Kinetic Theory of gases: Concept of pressure and temperature;
Lecture 2	Collision of gas molecules, Collision diameter; Collision number and mean free path
Lecture 3	Frequency of binary collisions (similar and different molecules); Wall collision and rate of effusion
Lecture 4	Maxwell's distribution of speeds, Nature of distribution of velocities, Maxwell's distribution of speeds in one, two and three dimensions
Lecture 5	calculations of average, root mean square and most probable values in each case
Lecture 6	Kinetic energy distribution in one, two and three dimensions,Calculation of number of molecules having energy $\geq \epsilon$
Lecture 7	Principle of equipartition of energy and its application to calculate the classical limit of molar heat capacity of gases
Lecture 8	Deviation of gases from ideal behavior; compressibility factor;
Lecture 9	Boyle temperature; Andrew's and Amagat's plots;
Lecture 10	van der Waals equation and its features; its derivation and application in explaining real gas behaviour,
Lecture 11	Other equations of state (Berthelot, Dietrici); Existence of critical state, Critical constants in terms of van der Waals constants;
Lecture 12	Law of corresponding states; virial equation of state;
Lecture 13	van der Waals equation expressed in virial form and significance of second virial coefficient;
Lecture `13	Intermolecular forces (Debye, Keesom and London interactions; Lennard-Jones potential - elementary idea)

BANKURA SAMMILANI COLLEGE

Teaching Module

Subject: Chemistry (Core)

Semester-I

Course code: Core T2 - Physical Chemistry I

Unit : Chemical Thermodynamics Teacher: Dr. Mrinmoy Shannigrahi

No.of	Tonio
Lectures	Торіс
Lecture 1	Zeroth and 1st law of Thermodynamics: Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics
Lecture 2	Concept of heat, work, internal energy and statement of first law; enthalpy, H
Lecture 3	relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions;
Lecture 4	Joule's experiment and its consequence
Lecture 5	Thermochemistry: Standard states; Heats of reaction;
Lecture 6	enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; Laws of thermochemistry
Lecture 7	bond energy, bond dissociation energy and resonance energy from thermochemical data
Lecture 8	Kirchhoff's equations and effect of pressure on enthalpy of reactions; Adiabatic flame temperature; explosion temperature
Lecture 9	Need for a Second law; statement of the second law of thermodynamics; Concept of heat reservoirs and heat engines; Carnot cycle
Lecture 10	Physical concept of Entropy; Carnot engine and refrigerator; Kelvin – Planck and Clausius statements and equivalence of the two statements with entropic formulation; Carnot's theorem; Values of dQ/T and Clausius inequality
Lecture 11	Entropy change of systems and surroundings for various processes and transformations; Entropy and unavailable work;
Lecture 12	Auxiliary state functions (G and A) and their variation with T, P and V. Criteria for spontaneity and equilibrium
Lecture 13	Thermodynamic relations: Maxwell's relations; Gibbs- Helmholtz equation,
Lecture `14	Joule-Thomson experiment and its consequences; inversion temperature; Joule-Thomson coefficient for a van der Waals gas; General heat capacity relations

Department of Chemistry

Module of the Syllabus

Session-2016-2017

Subject		Course	Class	Paper	Territ
	Chemistry (Major)	Physical Chemistry	Part-III	VI	Teacher Dr. M. Sl.
		and any second	1 411 - 111		Dr. M. Shannigrahi

(20 lectures)

Core Teaching Module		
Chapter	Dlash Date Date in the state	Lectures
	Black Body Radiation – birth of quantum mechanics	1
man.	Planck's Radiation Law- explanation of Black Body Radiation	1
nya	Photo-electric effect- Facts	1
Fe	Photo-electric effect- Einstein's explanation	1
Richard Feynman.	Wilson-Sommerfeld quantization rule and its applications-I (Bohr atom, Harmonic Oscillator)	1
	Wilson-Sommerfeld quantization rule and its applications-II (Rigid rotator, Particle in 1-D box)	1
S	Heisenberg's uncertainty principle	1
ianic	Bohr's correspondance principle and its application to Bohr atom and Particle in 1-D box	1
ry mecl	Elementary concept of operators, eigen function and eigen values	1
	Linear operators, commutation of operators	1
lemi tantu	Expectation values, Hermitian Operator and its properties	1
ds qu	Schrodinger's time independent equation, acceptability of wave function	1
un un	Probability, interpretation of wave functions	1
Quantum Chemistry dy understands quantum mechanics '-	Particle in 1-D box, setting up of Schrodinger's equation of 1-D box and its applications	1
	Application of 1-D box, degeneracy, comparison with free particle eigen function and eigen values	1
opoa	Normalisation, Orthogonality and probability distribution of ψ	1
hat n	Expectation values of x, x^2 , p_x , p_x^2 and their significance in relation to the uncertainty principle	1
say t	Extension of the problem to 2-d and 3-d and the problem of degeneracy	1
It is safe to say that nobo	Stationary Schrodinger equation for the H-atom in polar coordinates, Separation of Radial and Angular parts	1
'It is	Solution of φ part and emergence of magnetic q. no., Hydrogenic wave function upto n= 2	1
	Real wave function, concept of orbitals and shapes of $s \& p$ orbitals	1

Core Chapter	Teaching Module	No. of Lectures
	Primary photophysical processes, potential energy diagram	1
	Franck-Condon principle	1
	vibrational structure of electronic spectra	$\frac{1}{1}$
	bond dissociation, decay of excited state by radiative and nonradiative paths,	1
	fluorescence and phosphorescence	1
~	Jablonsky diagram, laws of photochemistry	1
G	quantum yield, photochemical equilibrium	1
ooso.	photosensitized reactions, kinetics of HI decomposition	1
setr	Alkali metal spectra, multiplicity of spectral lines	1
Photochemistry & Spectroscopy	idea of spin quantum number, physical idea of spin-orbit coupling	1
uistry	Rotational spectroscopy of diatomic molecules, rigid rotator model	1
hem	characteristic features (spacing and intensity), applications	1
hotoc	Vibrational spectroscopy of diatomic molecules, Simple Harmonic Oscillator (SHO) model;	1
đ	Vibration rotation spectra, applications	1
	Raman effect, characteristic feature and condition of Raman activity with illustrations,	1
	rotational and vibrational Raman spectra	1
	rule of mutual exclusion with examples	1
	NMR spectra, nuclear spin	1
	Larmour precision, chemical shift	1
	spin-spin interaction	

(20 lectures)

(8 lectures)

Core Chapter	Teaching Module	No. of Lectures
namics aw	Thermodynamic probability, entropy and probability	1
	Boltzmann distribution formula (with derivation), application to barometric distribution	1
(po	partition function and thermodynamic properties (U, H & P)	1
Statistical thermodynamics and the third law	Einstein's theory of heat capacity of solids and its limitations	1
	Nernst heat theorem and its implications	1
and	approach to zero Kelvin	1
titis .	Planck's formulation of third law	1
Sta	absolute entropies	1

Core Chapter	Teaching Module	No. of
	Introduction	Lectures 1
	symmetry elements and operations with illustrations	1
d	symmetry elements and physical properties	1
group	group and symmetry group	1
and	group multiplication table	1
	point group	1
Symmetry	determination of molecular point groups- I	1
	determination of molecular point groups- II	1
		(8 lectures)

SHANTANU HAZRA

MODULE OF CHEMISTRY (HONS) PAPER I

INORGANIC CHEMISTRY

CORE TOPIC		LECTURE(S)
	Bohr's model	1
	Sommerfeld's extension	1
	de Broglie's wave particle duality; Heisenberg's uncertainty principle	1
	and ochrounger's equation (malitative)	
	Significance of ψ and ψ_2 ; radial density, angular probability	1
	Characteristics of s-/p-/d-orbital	1
Atomic structure and	Aufbau principle, Pauli's exclusion/antisymmetry principle (statement and implication)	1
	Hund's rules, Slater's rules, quantum defect	1
periodic	Mendeleev-Seaborg's periodic table: basis and possible extension	1
properties	Periodic properties	1
	Atomic radius, ionic radius, covalent radius, van der Waals radius	1
	Ionization energy	1
	Electron affinity	1
	Electronegativity and its different scales, orbital/group	1
	electronegativity	
	Ionic potential, diagonal relationship, work function;	1
	aperiodicity	L
	Different bonds: ionic, covalent, dative, retrodative, hydrogen,	1
그는 옷을 다 같을 것	metallic	
	σ-/π-/μ-/δ-, banana (3c-2e)	1
	Different weak forces	
	Varied hybrid (sp, ds, sp ² , sp ³ , d ³ s, dsp ² , sp ³ d, d ² sp ³ , d ³ sp ³ etc) orbitals	1
	Hypervalence, resonance, bond polarity, dipole moment	1
londing and	Fajan's rules	1
tructure	VB, LCAO, MO (qualitative idea on homo-/heteronuclear di-/tri-	1
	/polyatomic molecules such as AX ₂ to AX ₆)	1
	symmetry, energy and overlap	
	HOMO-LUMO, VB-MO comparison;	1
	bond multiplicity, bond strength and related implications	1
	Prediction of structures and shapes of molecules: Helferich rules	1
	VSEPR theory	1
	Steric number, Bent's rule	1
		1
	Non-rigid molecules, Berry pseudorotation Different concepts	1
		1
	Pauling's rules, solvent acidity/basicity, Drago-Wayland equation	1
Acid-base and	Donor/acceptor number, Gutmann's rules,	1
lonor-acceptor	Hammett acidity function	1
	Super acid, solid acid, surface acidity, factors affecting acidity/basicity,	1
	HSAB principle	1
	Symbiosis, HOMO-LUMO and acid-base interaction	1
	Basis, measurement and anisotropicity of hardness/softness, pictorial diagram of frontier orbitals	1

CORE TOPIC	MODULE	LECTURE(S)
0.	Complementary/non-complementary redox reactions	LECTURE(5)
	Standard/formal electrode potentials	1
Redox system	Influence of pH, complex formation and precipitation reaction on formal potential	1
	Latimer/Forst/Pourbaix diagram	1
	Electrochemical series and its implication towards metal extraction principle	1
	Basis of redox titration, redox indicator, disproportionation, comproportionation	1
	Tassaert's observation, Jorgensen's proposition	1
	Werner's theory	1
	Lewis dot structure	1
	Classification and binding modes of ligands: classical, non-classical (π -complexing), σ -/(σ + π)-donor, σ -donor + π -acceptor, bridging	1
	(EO/EE) and bridging loop	1
날 한다 한다	Chelator (cis/trans) and chelate effect	1
Coordination hemistry I	Congregator, innermetallic, ambidentate, sequestering, flexidentate, Innocent, non-innocent, tripod, macrocycle,pod	1
	and, coronand, crown ether Cryptand, metalloorganic, organometallic, cyclometallated, Schiff-	1
	base, metalloligand and duplex behaviour	1
	Synthesis of compounds of different nuclearities Internal parameters: metal and ligand. External parameters: temperature, pressure, solvent, reagent, counter ion,	1
	aerobic/anaerobic Stabilization of different oxidation states	1
	Stabilization of different oxidation states	1
	Choice of starting materials, self assembly	1
	Types of isomerism Statistical numbering system, enumeration of isomers; factors	1
	effecting isomer population Interplay of steric and electronic factors, isomorphism and doping,	1
	structural equilibria	1
	Resolution of optical isomers	1
	IUPAC nomenclature I	$-\frac{1}{1}$
	IUPAC nomenclature II	

BANKURA SAMMILANI COLLEGE Department of Chemistry Teaching Module Subject: Chemistry (Core) Semester-I Course code: Core T2 - Physical Chemistry I Unit: Chemical Kinetics Faculty: Dr. Swapnadip Roy

No. of	Торіс
Lectures	
Lecture 1	Introductory class with basic chemistry
Lecture 2	Rate law, order and molecularity
Lecture 3	Introduction of rate law
Lecture 4	Extent of reaction; rate constants, order of a reaction
Lecture 5	Forms of rates of First, second and nth order reactions
Lecture 6	Pseudo first order reactions (example using acid catalyzed hydrolysis of methyl acetate)
Lecture 7	Determination of order of a reaction by half-life and differential method
Lecture 8	Opposing reactions, consecutive reactions and parallel reactions (with explanation of kinetic and thermodynamic control of products; all steps first order)
Lecture 9	Role of Temperature and theories of reaction rate
Lecture 10	Temperature dependence of rate constant
Lecture 11	Arrhenius equation, energy of activation
Lecture 12	Rate-determining step and steady-state approximation – explanation with suitable examples;
Lecture 13	Collision theory; Lindemann theory of unimolecular reaction; outline of Transition State theory (classical treatment)
Lecture `13	Homogeneous catalysis: Homogeneous catalysis with reference to acid-base catalysis
Lecture 14	Primary kinetic salt effect; Enzyme catalysis
Lecture 15	Michaelis-Menten equation, Lineweaver-Burk plot, turn-over number
Lecture 16	Autocatalysis; periodic reactions